
UNIT-1

Python is also a high-level language; other high-level languages you might have

heard of are C, C++, FORTRAN, PHP, and Java.

 Also, we do have low-level languages, sometimes referred to as machine

languages or assembly languages.

 Machine language is the encoding of instructions in binary so that they can be

directly executed by the computer.

 Assembly language uses a slightly easier format to refer to the low level

instructions.

 Assembly language is also called as mneumonic language.

 For every assembly language statement or instruction there will be one

corresponding machine language statement.

First, it is much easier to program in a high-level language.

 Programs written in a high-level language take less time to write, they are shorter

and easier to read, understand, repair, or upgrade.

Second, high-level languages are portable, meaning that they can run on different

kinds (both various hardware platforms or operating systems) of computers with

few or no modifications. Low-level programs can run on only one kind of

computer and have to be rewritten to run on another.

Two kinds of programs process high-level languages into low-level languages:

interpreters and compilers.

An interpreter reads a high-level program and executes it, meaning that it does

what the program says. It processes the program a little at a time, alternately

reading lines and performing computations.

A compiler reads the program and translates it completely before the program

starts running. In this case, the high-level program is called the source code, and

the translated program is called the object code or the executable. Once a program

is compiled, you can execute it repeatedly without further translation.

In the case of Python language, there are two ways to use the Python interpreter:

shell mode and program mode. In shell mode, you type Python expressions into the

Python shell, and the interpreter immediately shows the result.

Applications for Python

Python is used in many application domains. Here's a sampling.

 The Python Package Index lists thousands of third party modules for Python.

Web and Internet Development

Python offers many choices for web development:

 Frameworks such as Django and Pyramid.

 Micro-frameworks such as Flask and Bottle.

 Advanced content management systems such as Plone and django CMS.

Python's standard library supports many Internet protocols:

 HTML and XML

 JSON

 E-mail processing.

 Support for FTP, IMAP, and other Internet protocols.

 Easy-to-use socket interface.

And the Package Index has yet more libraries:

 Requests, a powerful HTTP client library.

 BeautifulSoup, an HTML parser that can handle all sorts of oddball HTML.

 Feedparser for parsing RSS/Atom feeds.

 Paramiko, implementing the SSH2 protocol.

 Twisted Python, a framework for asynchronous network programming.

http://pypi.python.org/pypi
http://wiki.python.org/moin/WebProgramming
http://www.djangoproject.com/
http://www.pylonsproject.org/
http://flask.pocoo.org/
http://bottlepy.org/
http://www.plone.org/
https://www.django-cms.org/
http://docs.python.org/library/markup
http://docs.python.org/library/json.html
http://docs.python.org/library/email
http://docs.python.org/library/ftplib.html
http://docs.python.org/2/library/imaplib.html
http://docs.python.org/library/internet
http://docs.python.org/howto/sockets.html
https://pypi.python.org/pypi/requests/
http://www.crummy.com/software/BeautifulSoup/
https://pypi.python.org/pypi/feedparser
https://pypi.python.org/pypi/paramiko/
http://twistedmatrix.com/

Scientific and Numeric

Python is widely used in scientific and numeric computing:

 SciPy is a collection of packages for mathematics, science, and engineering.

 Pandas is a data analysis and modeling library.

 IPython is a powerful interactive shell that features easy editing and

recording of a work session, and supports visualizations and parallel

computing.

 The Software Carpentry Course teaches basic skills for scientific computing,

running bootcamps and providing open-access teaching materials.

Installing Python on Windows, Mac, Linux

Go to the python website www.python.org and click on the 'Download' menu

choice.

Next click on the Python 2.7 (note the version number may change) Windows

Installer to download the installer. If you know you're running a 64-bit os, you can

choose the x86-64 installer.

Be sure to save the file that you're downloading.

Once you've downloaded the file, open it. (You can also double-click on it to open

it.)

You may get a warning that the file is executable. Just click ok at this prompt.

Once the installer starts, it will ask who to install the program for. Usually

installing for all users is the best choice.

Next, it needs to know where to install the file. The default choice is fine.

You need to install the entire package

http://wiki.python.org/moin/NumericAndScientific
http://scipy.org/
http://pandas.pydata.org/
http://ipython.org/
http://software-carpentry.org/
http://www.python.org/

It will take a while to install.

Click 'Finish' to exit the installer.

After installed, you should now have a Python menu choice. Start the program by

choosing IDLE (Python GUI)

This starts the python shell. You can type in simple commands to see how they

work. Try typing the following:

4 + 4

print 'Hello world!'

In order to do more elaborate programs, normally people store all the commands in

a file. To open a file to use in this way, go to File -> New Window.

Run your program, by going to Run -> Run Module.

The Python Shell

To start the shell under Windows simply go to the start menu and choose Python

(command line) from the menu.

Any Python expression can be entered into the shell and you will see the result

printed out for you right underneath

The >>> is called the Python prompt. The interpreter uses the prompt to indicate

that it is ready for instructions. We typed 2 + 3. The interpreter evaluated our

expression and replied 5. On the next line it gave a new prompt indicating that it is

ready for more input.

Working directly in the interpreter is convenient for testing short bits of code

because you get immediate feedback.

Elementary Input/Output in Python

Let us first try to write a simple Python program which greets to the user with the

following messages when executed.

Hello Welcome to Interactive Python Learning

Hello Welcome to Interactive Python Learning

For this purpose, we need to use print function. Like majority of programming

languages, in Python also any text enclosed between double quotes is called as

string literal or constant. Whatever message we want Python to display on the

console should be enclosed between double quotes and used with print function in

either of the following ways.

print "Hello Welcome to Interactive Python Learning"

print("Hello Welcome to Interactive Python Learning")

The most prominent difference between these two Python versions is that in

Python 2.x, the print command is special where as in Python 3 it is an ordinary

function. That is, in Python 2, both the two versions illustrated above can be used

with print function while in Python 3, only the one with paranthesis is acceptable.

print 'Hello Welcome to Interactive Python Learning'

print '''Hello Welcome to Interactive Python Learning'''

print """Hello Welcome to Interactive Python Learning"""

Variables and Types

Python is completely object oriented, and not "statically typed". You do not need

to declare variables before using them, or declare their type. Every variable in

Python is an object.

This tutorial will go over a few basic types of variables.

Numbers

Python supports two types of numbers - integers and floating point numbers

myint = 7

print(myint)

Strings

Strings are defined either with a single quote or a double quotes.

mystring = 'hello'

print(mystring)

mystring = "hello"

print(mystring)

Keywords in Python programming language

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

 Indenting Code

Python functions have no explicit begin or end, and no curly braces to mark where

the function code starts and stops. The only delimiter is a colon (:) and the

indentation of the code itself.

Code blocks are defined by their indentation. By "code block", I mean functions, if

statements, for loops, while loops, and so forth. Indenting starts a block and

unindenting ends it. There are no explicit braces, brackets, or keywords. This

means that whitespace is significant, and must be consistent

How To Give Interactive Input in Python?

Now, let us try to write a simple Python program which reads a persons name and

greats him. In order to do this, we need a way to get input from the user. In Python

there is a built-in function to accomplish this task, which is called input.

n = input("Please enter your name: ")

https://www.programiz.com/python-programming/keyword-list#true_false
https://www.programiz.com/python-programming/keyword-list#class
https://www.programiz.com/python-programming/keyword-list#finally
https://www.programiz.com/python-programming/keyword-list#is
https://www.programiz.com/python-programming/keyword-list#return
https://www.programiz.com/python-programming/keyword-list#none
https://www.programiz.com/python-programming/keyword-list#break_continue
https://www.programiz.com/python-programming/keyword-list#for
https://www.programiz.com/python-programming/keyword-list#lambda
https://www.programiz.com/python-programming/keyword-list#except_raise_try
https://www.programiz.com/python-programming/keyword-list#true_false
https://www.programiz.com/python-programming/keyword-list#def
https://www.programiz.com/python-programming/keyword-list#from_import
https://www.programiz.com/python-programming/keyword-list#nonlocal
https://www.programiz.com/python-programming/keyword-list#while
https://www.programiz.com/python-programming/keyword-list#and_or_not
https://www.programiz.com/python-programming/keyword-list#del
https://www.programiz.com/python-programming/keyword-list#global
https://www.programiz.com/python-programming/keyword-list#and_or_not
https://www.programiz.com/python-programming/keyword-list#with
https://www.programiz.com/python-programming/keyword-list#as
https://www.programiz.com/python-programming/keyword-list#if_else_elif
https://www.programiz.com/python-programming/keyword-list#if_else_elif
https://www.programiz.com/python-programming/keyword-list#and_or_not
https://www.programiz.com/python-programming/keyword-list#yield
https://www.programiz.com/python-programming/keyword-list#assert
https://www.programiz.com/python-programming/keyword-list#if_else_elif
https://www.programiz.com/python-programming/keyword-list#from_import
https://www.programiz.com/python-programming/keyword-list#pass
https://www.programiz.com/python-programming/keyword-list#break_continue
https://www.programiz.com/python-programming/keyword-list#except_raise_try
https://www.programiz.com/python-programming/keyword-list#in
https://www.programiz.com/python-programming/keyword-list#except_raise_try

print("Hello ", n, ", Welcome to learn python interactively")

The input function allows the user to provide a prompt string. When the function

is evaluated, the prompt is shown. The user of the program can enter the name and

press return. When this happens the text that has been entered is returned from the

input function, and in this case assigned to the variable n

In Python, we can use plus(+) operator (also known as string concatenation

operator) between two strings.

x="Abdul"

y="Kalam"

z="Dr. APJ"

print(z," ", x, " ", y)

print(z+x)

print(z+x+y)

x,y,z=input("Enter Surname Middle Last names")

print z,x,y

print(z+x+y)

x="Abdul"

y="Kalam"

z="Dr. APJ"

z

x

y

z,x,y

z+x+y

p=z,x,y

print p

We can also use another input function known as raw_input(). This function takes

input from the user and return the same as a string. If we want, we can split this

string into values using split() method. For Example, the following program

demonstrates the same.

x,y,z=raw_input("Enter Surname Middle Last name").split()

print z,x,y

print(z+x+y)

x,y,z=raw_input("Enter Surname Middle Last name").split(',')

print(type(x))

print z,x,y

print(z+x+y)

x,y,z=input("Enter three integers separated by spaces").split()

#x,y,z=int(x),int(y),int(z)

print z,x,y

print(z+x+y)

day,mon,year=input("Enter date like 17-12-2018").split("-")

day,mon,year=int(day),int(mon),int(year)

print(day, mon, year)

Values and Data Types

Python has a function called type which can tell inform what class an object or

value is.

print(type("Hello, World!"))

print(type(17))

When we run the above program, we get output as <type „str‟> and <type „int‟>

indicating the first value “Hello, World!” is str (string) type while 17 is int

(integer) type.

Similarly, numbers with a decimal point belong to a class called float, because

these numbers are represented in a format called floating-point.

print(type("17"))

print(type("3.2"))

print(42000)

print(42,000)

Because of the comma, Python chose to treat this as a pair of values. In fact, the

print function can print any number of values as long as you separate them by

commas. Notice that the values are separated by spaces when pythonthey are

displayed.

print 42,37,56,34

print 3.4, "Hello", 45

print(42, 17, 56, 34, 11, 4.35, 32)

print(3.4, "Hello", 45)

Type Conversion

Sometimes it is necessary to convert values from one type to another. Python

provides a few simple functions that will allow us to do that. The functions int,

float and str will (attempt to) convert their arguments into types int, float and str

respectively. We call these type conversion functions.

The int function can take a floating point number or a string, and turn it into an int.

For floating point numbers, it discards the decimal portion of the number

print(3.14, int(3.14))

print(3.9999, int(3.9999)) # This doesn't round to the closest int!

print(3.0, int(3.0))

print(-3.999, int(-3.999)) # Note that the result is closer to zero

print("2345", int("2345")) # parse a string to produce an int

print(17, int(17)) # int even works on integers

print(int("23bottles"))

The type converter float can turn an integer, a float, or a syntactically legal string

into a float.

print(float("123.45"))

print(type(float("123.45")))

The type converter str turns its argument into a string.

print(str(17))

x=str(17)

print(x,type(x),type(17))

print(str(123.45))

y=str(123.45)

print(y,type(y),type(123.45))

print(type(str(123.45)))

The following program reads initial velocity,time duration then displays distance

travelled.

u = int(raw_input("Enter initial velocity in m/sec"))

print(type(u));

vel = int(u)

print(type(vel))

t = int(raw_input("Enter time travelled(sec)"))

a = int(raw_input("Enter accelaration(m/sec^2)"))

print(type(t))

distance=vel*t + 0.5*a*t*t;

print("Distance Travelled=", distance)

import math

num=float(input("Enter a real number"))

print(num, math.ceil(num),math.floor(num))

Write a program to compute hypotnus of a right angled triangle given base and

height of the triangle.

import math

a=float(input("Enter base of a triangle"))

b=float(input("Enter height of a triangle"))

h=math.sqrt(a**2+b**2)

print "Hypoteneus=", h

